Effects of geometric and material nonlinearities on tunable band gaps and low-frequency directionality of phononic crystals

نویسندگان

  • Pai Wang
  • Jongmin Shim
  • Katia Bertoldi
چکیده

We investigate the effects of geometric and material nonlinearities introduced by deformation on the linear dynamic response of two-dimensional phononic crystals. Our analysis not only shows that deformation can be effectively used to tune the band gaps and the directionality of the propagating waves, but also reveals how geometric and material nonlinearities contribute to the tunable response of phononic crystals. Our numerical study provides a better understanding of the tunable response of phononic crystals and opens avenues for the design of systems with optimized properties and enhanced tunability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanically tunable phononic band gaps in three-dimensional periodic elastomeric structures

Three-dimensional periodic structures have many applications in acoustics and their properties are strongly related to structural details. Here we demonstrate through simulations the ability to tune the phononic band gaps of 3D periodic elastomeric structures using deformation. The elastomeric nature of the material makes the transformation of the band gaps a reversible and repeatable process, ...

متن کامل

Soft phononic crystals with deformation-independent band gaps

Soft phononic crystals have the advantages over their stiff counterparts of being flexible and reconfigurable. Normally, the band gaps of soft phononic crystals will be modified after deformation due to both geometric and constitutive nonlinearity. Indeed these are important properties that can be exploited to tune the dynamic properties of the material. However, in some instances, it may be th...

متن کامل

Tunable phononic crystals with anisotropic inclusions

We present a theoretical study on the tunability of phononic band gaps in two-dimensional phononic crystals consisting of various anisotropic cylinders in an isotropic host. A two-dimensional plane-wave expansion method was used to analyze the band diagrams of the phononic crystals; the anisotropic materials used in this work include cubic, hexagonal, trigonal, and tetragonal crystal systems. B...

متن کامل

Maximizing phononic band gaps in piezocomposite materials by means of topology optimization.

Phononic crystals (PCs) can exhibit phononic band gaps within which sound and vibrations at certain frequencies do not propagate. In fact, PCs with large band gaps are of great interest for many applications, such as transducers, elastic/acoustic filters, noise control, and vibration shields. Previous work in the field concentrated on PCs made of elastic isotropic materials; however, band gaps ...

متن کامل

Tailoring of phononic band structures in colloidal crystals.

We report an experimental study of the elastic properties of a two-dimensional (2D) colloidal crystal subjected to light-induced substrate potentials. In agreement with recent theoretical predictions [H. H. von Grünberg and J. Baumgartl, Phys. Rev. E 75, 051406 (2007).10.1103/PhysRevE.75.051406] the phonon band structure of such systems can be tuned depending on the symmetry and depth of the su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013